
www.manaraa.com

Multiparadigm Data Structures in LedaTimothy A. BuddDepartment of Computer ScienceOregon State UniversityCorvallis, Oregon97331budd@cs.orst.eduSeptember 20, 1994AbstractMultiparadigm programming is a term used to describe a style of software developmentthat makes use of facilities originally designed in support of a number of di�erent programminglanguage paradigms. In this paper we illustrate our conception of multiparadigm programming,by describing how various data structures can be implemented in the programming languageLeda. Leda is a strongly-typed compiled multiparadigm programming language that we havebeen developing over the past several years. Our exposition serves both to illustrate the idea ofmultiparadigm programming, and to describe the features of the language Leda.1 IntroductionProgramming languages are often divided into di�erent schools, or paradigms. The term \paradigm",meaning model or world view, is intended to indicate the di�erence is one of outlook or perception,rather than a fundamental incomparability. From a simple theoretical point of view, all program-ming languages which have su�cient power to simulate a Turing machine, and this includes almostall languages of interest, are equally powerful. Thus arguments about the \power" of programminglanguages, if by power one means the ability to perform a given set of tasks, are most often mean-ingless. Such arguments were called by the late Alan Perlis \Turing Tarpit" arguments, becausethey are so di�cult to disentangle oneself from, and are so fundamentally useless.Di�erent programming language paradigms are important not because they provide new capa-bilities that are not available to languages and programmers working in other models, but becausethey point the way towards thinking about problems in di�erent fashions. Often these di�erencescan be seen to be simply the organization of the same information in contrasting styles. Similarobservations have often been made about natural languages [Who56]. An understanding of thesedi�erences, and of the problem areas for which di�erent outlooks are most appropriate, is a help toprogrammers attempting to select the most suitable approach for solving a given task.1

www.manaraa.com

Our intent in this paper is to illustrate a style of program development that draws upon featuresfrom a number of di�erent programming language paradigms. In particular, we will use aspectsof imperative programming, object-oriented programming, functional programming, and logic (orrelational) programming. We will show how these various language paradigms can be integratedin a single problem domain, and how each can derive bene�t from the others. The problem wewill consider is the creation of a few simple data structures for lists and two-dimensional tables. Inaddition, we will use the development of this example as a means to introduce the multiparadigmprogramming language Leda.2 Objects and ClassesWe start our discussion by describing some of the object-oriented features of Leda. Our list datastructure will be implemented using two classes (Figure 1). The class List is the visible class accessedby users of the list abstraction. This class merely de�nes the head of a chain of linked-list values.The class ListElement describes an individual link in this linked list. Normally users of the listabstraction would never be concerned with this latter class.1The structure of a class declaration in Leda is slightly di�erent from class declarations in otherobject-oriented languages, such as C++ or Object Pascal. In Leda a class description is divided intotwo components. The initial portion indicates those �elds that are unique to each instance of theclass. The items following the optional shared keyword indicate �elds that are shared in commonby all instances. The motivation for this design and some of the implications of this decision areexplored in more detail in [Budd 91c].Both the classes List and ListElement are parameterized classes. That is, they are quali�ed by anargument (X in both classes) that is unbound at the time the class is de�ned. To declare an instanceof such a class it is necessary for the user to supply a binding for this argument. For example, theuser can declare a variable as maintaining a list of integers, or a list of reals. Examples of suchdeclarations will be provided shortly.Even without knowing the binding for the quali�er of a class, it is possible to use the argumentname as a type in certain situations. For example, it is possible to declare a �eld in the unsharedportion of a class. An example is the datum �eld in the class ListElement, which holds the actualvalue being maintained by the class. It is not possible to declare such a �eld in the shared portion,although other, bound, types can be used to declare data �elds in the shared portion of a class.Notice the quali�er being used to bind the argument in a �eld representing an instance of a furtherparameterized type. This occurs in both the next �eld in the class ListElement and the data �eld inthe class List.The quali�er for a parameterized class can be used as an argument type in methods associatedwith the class. We see this in almost all the methods associated with these two classes.2 A method1In designing Leda there were a number of topics that, while important in a wider sense, seemed irrelevant to theissues we were interested in exploring. Among these are the possibilities of separate compilation, a Leda programmingenvironment, and the purposeful hiding of information. As an example of the latter, it has been suggested that itwould be desirable to hide the existence of the class ListElement from users of the List abstraction. While we seesome merit in this position, the introduction of such protection mechanisms would have added additional complexityto the language.2The unbound variable Z in the method reduce is more complex, and will be discussed in detail in Section 4.2

www.manaraa.com

typeListElement := class(X)datum : X;next : ListElement(X);sharedadd : method(X);remove : method(X) ! ListElement(X);items : relation(var X);onEach : method(function(X));end;List := class(X)data : ListElement(X);sharedadd : method(X);addToEnd : method(X);addNew : method(X) ! List(X);includes : method(X) ! boolean;remove : method(X);reduce : method(Z, function(Z, X)! Z) ! Z;count : method(function(X)!boolean) ! integer;items : relation(var X);end; Figure 1: The classes List and ListElement
3

www.manaraa.com

method ListElement.add(value : X);beginif de�ned(next) thennext.add(value)elsenext := ListElement(value, next);end;method List.add(value : X);begindata := ListElement(value, data);end;method List.addToEnd(value : X);beginif de�ned(data) thendata.add(X)elseadd(X);end;method List.addNew(value : X) ! List(X);beginreturn List(ListElement(value, data));end; Figure 2: Methods used to add elements to a listis one of three subprogram abstractions found in Leda, the other two being functions and relations.A method di�ers from a function in that a method is always associated with a speci�c class, andthus the invocation of a method by message passing involves an implicit receiver for the message.Nevertheless, a method is very close to a function and it is relatively easy to both convert a methodinto a function and conversely convert a function into a method. An example of the former will begiven in subsequent discussion.The methods which implement adding elements to a list are shown in Figure 2. Note that thesemethods can be developed, and code can even be generated for them, without any informationregarding the nature of the unbound type X.3All variables in Leda are either de�ned or unde�ned. Variables are initially unde�ned. Further-more, unlike most programming languages, it is possible to query a variable to determine whether3This property actually depends upon the fact that internally all values have the same representation; namely apointer. These pointers are never explicitly manipulated by the programmer, and the language itself does not supporta pointer type. 4

www.manaraa.com

method ListElement.remove(value : X) ! ListElement(X);beginif datum = value thenreturn nextelse if de�ned(next) thennext := next.remove(value);return self;end;method List.remove(value : X);beginif de�ned(data) thendata := data.remove(value);end; Figure 3: Methods used to remove an element from a listit has yet been de�ned. We see an example of this in the method ListElement.add, which adds anelement to the end of a linked list. A test is �rst made to see if the link �eld is de�ned, that is,whether there are more elements in the list. If so, then the value to be added is passed down thelinked list. If not, then a new link is formed. This is accomplished using the constructor for theclass LinkedList.A constructor is a function used to construct a new instance of a class. Constructors are gen-erated automatically by the Leda compiler for each new class declaration. There are two forms ofconstructor. A constructor with no arguments creates a new instance of a class where all �elds areinitially unde�ned. When arguments are passed to the constructor, as they are here, they mustmatch in type and number the �elds in the unshared portion of the class. The values of the argu-ments are then used to initialize the �elds in the newly created object. Thus in this case a new linkis created with the argument value used to initialize the datum �eld, and the currently unde�nedvalue of the �eld next in the current node used to initialize the next �eld in the newly constructednode. The Leda system tracks references to dynamically created data, and releases such storagewhen it is no longer accessible.There are three methods used to add elements to a list structure. The method add places anew element at the front of a list, by building a new link and changing the data �eld. The methodaddToEnd adds the element to the end of the list, using the method de�ned in class ListElement.The method addNew does not modify the current list, but instead creates a new list head and addsthe given element to this new list. This new list is then returned as the value of the method. Thenew list and the original list share the other elements in common. (We could have just as easilyduplicated the original list, but chose not to for the sake of brevity of presentation.)Figure 3 shows the methods used to remove an element from a list. The method used in theunderlying class ListElement illustrates the use of the pseudo-variable self. Methods carry with theman implicit parameter which represents the receiver for the message which invoked the method.This implicit parameter can always be accessed within a message using the name self. The type5

www.manaraa.com

struct link fint value;link � next;g �p;struct list fstruct �link;g aList;sum = 0;for(p = aList!link; p; p = p!next)sum += p!value; Figure 4: Summing the values of a linked list in Cassociated with this pseudo variable is the type of the object which received the message, whichmust necessarily be a descendant of the class in which the method is de�ned.3 RelationsThe techniques used in the previous section were all object-oriented or imperative in nature. Inthis section we will start to consider how other paradigms, in particular the relational (or logic-programming) paradigm can be integrated into Leda programs. The relations used in this sectionare somewhat unusual. More conventional logic programming in Leda is described in [Budd 91a].4The speci�c problem we wish to address in this section is how the programmer can usefully iterateover elements of a list; for example to print out the list or sum the values in the list. Experience tellsus that a user of a data abstraction, such as our lists, will usually not be the same as the developerof the code. Thus software engineering practices, such as Parnas' Principles [Parnas 72], dictatethat the user of a data abstraction should require as little information about the internal structureof the data abstraction as possible.Previous languages have provided various models that could be emulated in addressing thisproblem. The most common technique is that used in languages such as C or Pascal. In theselanguages iteration is accomplished using a loop, such as a for or while statement. This loopperforms the intended action, but then must explicitly access the internal structure of the list. Forexample a method in C to sum the values of a linked list (Figure 4) must have intimate knowledgeof the location and name of the link �elds in structures with which the linked list is implemented.Such exposure of internal implementation details
ies in the face of the principles of abstraction andinformation hiding.A second model is provided by languages such as CLU [Liskov 81], which supply a special typeof procedure, called an iterator. An iterator acts as a procedure, and when invoked yields the4It should be noted that the syntax of Leda has evolved over time. Some of the examples used in the earlier paperare no longer legal Leda programs. 6

www.manaraa.com

List = cluster [t : type] is items, add, ...rep = oneof[pair : pair, empty : null]pair = struct[head : t, tail : List[t]]...items = iter(lst : cvt) yields(int)tagcase lsttag pair(p : pair): yield(p.head)for i:t in items(lst.tail) doyield(i)endtag empty:endend itemsend List...sum : int := 0for val:int in List[int]$items(aList) dosum := sum + x Figure 5: An iterator in CLU�rst element in a collection. It can later be restarted and will return the next element. It can berestarted repeatedly until all elements have been exhausted. In CLU iterators are controlled by aspecial form of the for loop (Figure 5). Iterators are generalized to generators in languages suchas Icon [Griswold 90] and others [Budd 87, Berztiss 90]. The iterator solution has the bene�cialadvantage of isolating the control details from the user of the abstraction. Nevertheless, it does soonly at the cost of introducing a new type of procedural abstraction to the language. One of ourmajor objectives in designing the language Leda was to keep the language as small and simple aspossible. Thus a solution formed out of the existing elements of the language would be preferableto the introduction of a new mechanism.A third potential model is provided by the language Smalltalk [Budd 87]. In Smalltalk iterationis accomplished through the interaction of message passing and the ability to form blocks. A blockis basically a lexically scoped function which can be passed as argument to a method, and whenexecuted evaluates in the context in which it was de�ned. Thus a list in Smalltalk, for example,provides a method such as do: (Figure 6). This method takes as argument a block and executesthe block once for each element of the list, passing it as argument the value of the element. Whilewe possess the basic mechanisms (namely lexically scoped functions as �rst class values) to emulatethis approach in Leda, the utility of this technique in Smalltalk is facilitated by an unusual semanticrule. Namely a return statement inside a block is treated as a return not from the \block function"but from the function in which the block was created. Supporting this semantics is di�cult anderror-prone, and thus we rejected this approach. (Although, as we will explore in the next section,passing functions as arguments to other functions is an extremely powerful technique, and quite7

www.manaraa.com

sum 0.aList do: [:x j sum sum + x].Figure 6: Iterating over elements of a list in Smalltalkuseful in Leda).Instead, in Leda we chose to use the existing facilities provided by relations. A relation isa subprogram abstraction, similar to a function or a method. By assigning values to arguments(typically call-by-reference arguments), a relation attempts to \satisfy" some property de�ned bythe body of the relation. In one sense a relation can be viewed as a boolean function, which returnstrue if satisfaction is possible and false if it is not. A relation may have multiple means of satisfaction.An important property of relations is that they can be forced to \backtrack" over these multiplesolutions until a satisfactory outcome is obtained. In particular, a while statement causes a relationto backtrack over all possible solutions.Figure 7 shows the relation items for the classes List and ListElement, as well as an exampleillustrating how a while statement can be used to sum the items in a list. Basically stated, the whileloop generates all the values which \satisfy" the relation items. When provided with an unboundvariable, every item satis�es the relation. Thus all values will be generated, and in turn each willbe added to the sum.To see how the relation operates, consider �rst the de�nition of the relation in class List. Thisde�nition can be read as asserting that the relation items holds for the variable value if the �elddata is de�ned and if the relation items from the class ListElement is satis�ed. The relation in classListElement is more complex, and is described as the disjunction of two clauses. Thus there are twodi�erent ways in which this relation can be satis�ed. Each approach is tried in turn in an attemptto satisfy the relation.The �rst clause uses the uni�cation operator, which appears somewhat like a double sided as-signment operator. The uni�cation operator is a boolean valued function that attempts to make theleft and right arguments equal. If both are de�ned and are unequal, it fails. On the other hand,if only one argument is de�ned (which can be either the right or left argument), then the unboundargument is set equal to the other and the relation succeeds. A subsequent attempt to �nd a newsolution undoes the assignment, and the relation will investigate the next clause. In this particularcase the right argument to the uni�cation operator, the variable datum, will always be de�ned. Theleft argument will generally be unde�ned, and thus the e�ect will be to assign the unbound variabledenoted by the call-by-reference parameter value to an element of the list.The second clause in the relation is a conjunction which asks �rst if the �eld next is de�ned, andif so tries to satisfy the relation by invoking recursively the items relation on the next �eld. Thusthe recursive process will eventually assign to datum all the values in the list.The important property of this approach is that the user of the relation, represented by the pro-gram in Figure 7, needs absolutely no knowledge of how the various alternatives are being generated.Knowledge of the internal structure of lists is not required for procedures to access each element ofthe list in turn.Another important property of relations is that they can be used both as generators and as ameans to test a property. In Figure 7 the relation is used as a generator. This depends upon the8

www.manaraa.com

relation List.items(var value : X);beginreturn de�ned(data) and data.items(value);end;relation ListElement.items(var value : X);beginreturn(value :=: datum) or(de�ned(next) and next.items(value));end;varaList : List(integer);sum, val : integer;beginaList := List;aList.add(3);aList.add(7);...sum := 0;while aList.items(val)sum := sum + val;end Figure 7: The relation items and an example of its use
9

www.manaraa.com

method List.includes(value : X) ! boolean;beginif de�ned(data) thenif data.items(value) thenreturn true;return false;end; Figure 8: Testing membership in a listfact that the argument to the generator is initially unde�ned, and is bound as part of the generationprocess. Passing an actual value to a relation yields success if the relation is satis�ed with thatvalue. In this case, the relation is satis�ed if the value is present in the list. This fact is used by themethod includes (Figure 8), which is used to test membership in a list.We will return to relations in a later section to investigate further ways in which relationalprogramming can be combined with object-oriented and functional styles of program development.4 FunctionalsIn this section we investigate in more detail the problem posed by taking a list of integers andcomputing their sum. This could be easily solved by use of a while loop, such as that used in theearlier Figure 7. Having solved this one problem, hypothesize now that a need arizes for a routineto compute the product of the same list. Later there may be a need to count the elements whichsatisfy some property. It would be desirable if more than just the outline of the approach to solutioncould be used in each of these cases. That is, it would be nice if the actual code used in the solutioncould be reused.To do this, it is �rst necessary to generalize the problem. We can characterize both the problemsof taking the sum and product of a list by saying in each case we are provided with two objects.1. An identity value which is used to \prime the pump" prior to iterating over the elements ofthe list. In the case of a sum this identity value is zero, while in the case of a product thisidentity value is one.5 This identity may or may not be the same type as the elements in thelist. If we continue to use X to represent the type of the elements in the list, let us use Z torepresent the (unknown) type of the identity value.2. A function which takes two values. The left value is of type Z and is initially the identity value.The right argument is of type X and ranges over the elements of the list. The function mustyield a new value of type Z. As each element of the list is examined this function is invoked,yielding the new value to be used with the next list element. When all list values have beenexhausted, the �nal value of this function is returned.The method reduce, shown in Figure 9, takes these two quantities as arguments and generates thereduction of a list to a single element. Notice the body of the method uses the relational technique5To be technically accurate, what we require is a left-identity value.10

www.manaraa.com

described in the last section to access each element of the list in turn. A method or function, suchas reduce, which takes a function as argument or yields a function as a result, is called a functional(sometimes a higher-order function). Programs which make extensive use of functionals are oftenconcise and elegant. Such a style of programming is called functional programming [Backus 78,Wikstrom 87].6Programming with functionals is facilitated by the ease with which other program structures,such as operators, methods and relations, can be converted to functions. In Figure 9 the built-inoperators + and * are converted to functions and passed as arguments to reduce, thereby yielding thesum and product of a list. User de�ned functions can also be used. Figure 9 shows the de�nition of afunction which takes a count and a list element and returns an updated count which is one greater ifthe list element is positive. Reducing using this function will indicate the number of positive valuesin a list.When a method is used in a context in which a function is required, such as being passed asargument to a function, the method is coverted into a function by adding the implicit receiver as the�rst argument to the function. Figure 9 shows this behavior, illustrating how the function reducecan be used to append one list to the end of a second. The �rst list is used as the \identity" element.The function passed as the second argument is the addNew �eld of the class List. Since the variableaList is of type List(integer), the function aList.addNew is converted into a function which takes as�rst argument a list of integers, an integer as the second argument, and yields as result a new listof integers. The reader can verify that the result of this reduction will be a new list in which valuesof the two original lists haven been appended together.A second functional we will describe is the method count, shown in Figure 10. This methodtakes as argument a function which yields a boolean result, and returns the count of the number ofelements in the list for which the function is satis�ed. While we could have implemented count usingreduce, the description of an alternative way to implement this method will help to illustrate a fewmore features of Leda. Instead of using relations, the alternative technique makes use of the methodonEach, which is found in the class ListElement. This method takes a procedure (a function whichdoes not yield a result), and executes it on each element of the list. The method count constructsdynamically a nameless function which is passed as argument to the onEach method. This functionas a side e�ect alters the value of the variable sum. Features to note are that functions can be writtenas expressions, and that nested functions capture the environment in which they are de�ned.One of the most important features of Leda is the fact that by supporting multiple programmingstyles we have a framework in which various approaches to problem solution, such as these twotechniques of implementing higher-order functions, can be compared and contrasted for featuressuch as ease of use, e�ciency, and understandability.6We are actually being somewhat loose here. Pure functional programming also requires an absence of functionswhich produce side e�ects. This requirement is not enforced by the Leda system. In fact, it has been our observationthat at the lowest level functions which use side e�ects to achieve their objective are often more e�cient whenprogramming in a functional style. This supports our basic tenet that a multiparadigm language can provide bene�tsto all styles of programming. 11

www.manaraa.com

method List.reduce(ident : Z, f : function(Z, X) ! Z) ! Zvar value : X;beginif de�ned(data) thenwhile data.items(value)ident := f(ident, value);return ident;end;function posCount(count : integer, element : integer) ! integerbeginif element > 0 thencount := count + 1;return count;end;varaList : List(integer);bList : List(integer);cList : List(integer);sum, prod, positiveCount : integer;beginaList := List;aList.add(3);aList.add(7);bList := List;bList.add(6);bList.add(13);...sum := aList.reduce(0, +);prod := aList.reduce(1, �);positiveCount := aList.reduce(0, posCount);...cList := aList.reduce(bList, aList.addNew);...end Figure 9: The functional reduce and examples of its use12

www.manaraa.com

method List.count(f : function(X) ! boolean) ! integer;var sum : integer;beginsum := 0;if de�ned(data) thendata.onEach(function(val: X);beginif f(x) then sum := sum + 1;end);return sum;end; Figure 10: A functional implemented without relations5 Subclasses and Parameterized ClassesLeda supports the specialization of classes through inheritance. Currently only single inheritanceis supported. We have found that the majority of problems which are solved using multiple inheri-tance in other languages can often be addressed more easily using parameterized classes and singleinheritance.Figure 11 shows two instances of classes being de�ned using subclassing. In the �rst case theparameterized class List is subclassed in order to provide a binding for the parameter, yielding theclass IntegerList. This class can then provide integer-speci�c operations, such as a method to returnthe sum of the list.The second example illustrates the fact that the unbound parameter from a parameterized classmust be bound before a class can be subclassed. However, a programmer is free to create a newparameter for the subclass. The parameterized class Set is generated by subclassing from the classList, modifying only the method used to add a new element to the collection.6 TablesThe table data structure, sometimes called a dictionary, can be thought of as a generalization ofan array. Like an array, a table is a collection of key and value pairs. However, unlike an array,the key values can be arbitrary, and the table need not have a �xed declared size. There are manydi�erent techniques that can be used to implement tables. The approach we will use here is designedto illustrate features of the language Leda, and is not necessarily the most e�cient approach whenmeasured by access or insertion time.As was the case with lists, our construction of tables will be built on top of another utility classthat is manipulated only by the methods in class Table, and never directly by the user. In this casethe utility class is called Association (Figure 12). An association maintains a key-value pair. Theclass Association has no behavior, only data. Thus the class in this case is being used as a recordstructure. The table itself will maintain data as a list of associations.13

www.manaraa.com

typeIntegerList := class of List(integer)sharedsum : method() ! integer;end;Set := class(Y) of List(Y)sharedadd : method(Y);end;method Set.add(value : Y);beginif not includes(Y) thenList.add(self, value);end; Figure 11: Subclassing in LedaThe method add is used to add a new value to the table. The relation items is used, as wasthe case with the similarly-named relation in class List, to access the values of the relation. In factthe implementation of this relation simply invokes the relation from the list class, then uses theuni�cation operator to break apart the elements yielded by the list.The use of relations for accessing elements within a table implies that retrival is not restrictedto be by key alone. If the variable tabl contains a table and x is a currently unde�ned value, theexpression tabl.items(3, x) is a boolean expression which returns true and, as a side e�ect, sets thevalue of x to the entry (or �rst entry) associated with the key 3. It will return false if there is nosuch entry. Alternatively, the expression tabl.items(x, 4) will generate the key value associated withthe value 4. Thus, tables can be used as associative arrays indexing by either the �rst or second�eld.7 Relational ObjectsIn previous sections we have outlined how relational programming techniques can be used in supportof problems solved in a more-or-less object-oriented style. In this section we return to problemsformulated in a relational style, and consider how some of the object-oriented data structures wehave developed can be of bene�t to relational programs.A feature of the logical programming language Prolog that is not found in Leda is the abilityto dynamically assert a relation at run-time. For example, suppose that parent is a database ofgenealogical information, as in Figure 13. During execution a di�erent relation, such as the new-Daughter relation shown in Figure 13, can assert an additional fact about the relation parent. Thisnew fact is added to the database, and is thereafter used just as if it were asserted in the originaldatabase. 14

www.manaraa.com

typeAssociation := class(X, Y)key : X;value : Y;end;Table := class(X, Y)data : List(Association(X, Y));sharedadd : method(X, Y);items : relation(var X, var Y);end;method Table.add(key : X, value : Y);begindata.add(Association(key, value));end;relation Table.items(var key : X, var value : Y);var item : Association(X, Y);beginreturn data.items(item) and(item.key :=: key) and (item.value :=: value);end; Figure 12: The implementation of the table data structureparent(leda, helen).parent(zeus, helen).parent(leda, castor).parent(zeus, pollux)....male(zeus).female(leda).female(helen)....mother(X, Y) :� parent(X, Y), female(X).newDaughter(X, Y) :� assert(parent(X, Y)), assert(female(Y)).Figure 13: A dynamically changing database in Prolog15

www.manaraa.com

In Leda a dynamically changing relation can be modelled using a data structure, such as thetable data structure we de�ned in the last section. Figure 14 illustrates this technique. Here names isan enumerated datatype, the most commonly used substitute for Prolog symbols. (Although, unlikeProlog, relations in Leda can manipulate any type of value). Parent is declared as a table of names,and the initial database is constructed by adding elements to the table. Subsequent additions, suchas that used in the newDaughter function, as also performed using the add method.8 Concluding RemarksOur intent in this paper has been two-fold. First, our desire has been to demonstrate by exampleexactly what we mean by the frequently-used but seldom-de�ned term multiparadigm programming,and demonstrate that such an idea is not only possible but powerful and useful. Second, by meansof this example we wish to illustrate the features of the programming language Leda which we aredeveloping.Our basic tenet is that imperative programming, object-oriented programming, functional pro-gramming, and logic programming are all useful abstraction techniques, and each shines in di�erentproblem domains. More importantly, each can bene�t by the use of facilities provided by the others.By providing a simple integrated framework in which each is supported, we supply the programmerwith the broadest possible assortment of tools with which to address any given problem.A danger in this approach is the \kitchen-sink" syndrome. This is where a language attemptsto provide all features to all programmers, and ends up being so large that no programmer canever hope to master the entire language. Instead, Leda is a surprisingly simple language, at leastwhen measured by the complexity of its grammar. Our objective has been to produce a language ofapproximately the same complexity as Pascal.The list and table data structures we have developed in this paper use features of object-orientedprogramming for their basic structure, but important elements are provided using relational andfunctional techniques. While this is certainly not the only way in which these data structures canbe implemented (even in Leda), the design here illustrates how a programmer can easily integrateprogramming techniques from a number of di�erent language paradigms.References[Backus 78] John Backus, \Can Programming Be Liberated from the von Neumann Style? A Func-tional Style and Its Algebra of Programs", Communications of the ACM, Vol 21(8): 613-641, (August 1978).[Berztiss 90] Alfs Berztiss, Programming with Generators, Ellis Horwood, 1990.[Budd 87] Timothy A. Budd, A Little Smalltalk, Addison-Wesley, 1987.[Budd 89] Timothy A. Budd, Functional Programming in an Object Oriented Language, OregonState University, Technical Report 89-60-16, August 1989. submitted for publication.16

www.manaraa.com

typenames := (leda, helen, zeus, hermione, menelaus, castor, tyndareus, pollux);relation mother(mom : names, kid : names);beginreturn parent.items(mom, kid) and female.items(mom);end;function newDaughter(prnt : names, kid : names);beginparent.add(prnt, kid);female.add(kid);end;varparent : Table(names, names);female : List(names);male : List(names);beginparent := Table;male := List;female := List;...parent.add(leda, helen);parent.add(zeus, helen);parent.add(leda, castor);parent.add(zeus, pollux);...male.add(zeus);female.add(leda); female.add(helen);...newDaughter(helen, hermione);end; Figure 14: A dynamically changing database in Leda17

www.manaraa.com

[Budd 91a] Timothy A. Budd, \Blending Imperative and Relational Programming", IEEE Software,Vol 8(1): 58-65, January 1991.[Budd 91b] Timothy A. Budd, An Introduction to Object-Oriented Programming, Addison-Wesley,1991.[Budd 91c] Timothy A. Budd, \Sharing and First Class Functions in Object-Oriented Languages",submitted for publication.[Griswold 90] Ralph E. Griswold and Madge T. Griswold, The Icon Programming Language,Prentice-Hall, 1990.[Liskov 81] Barbara Liskov, Russel Atkinson, Toby Bloom, Eliot Moss, J. Craig Scha�ert, RobertSchei
er, and Alan Snyder. CLU Reference Manual, Springer-Verlag, 1981.[Parnas 72] David L. Parnas, \On the Criteria to Be Used in Decomposing Systems into Modules",Communications of the ACM, 15(12): 1059-1062, 1972.[Wikstrom 87] �Ake Wikstr�om, Functional Programming Using Standard ML, Prentice-Hall Interna-tional, 1987.[Who56] Benjamin Lee Whorf, Language, Thought & Reality, MIT Press, Cambridge, 1956.

18

